Exercise 20

Solve the initial-value problem.

$$
3 y^{\prime \prime}-2 y^{\prime}-y=0, \quad y(0)=0, \quad y^{\prime}(0)=-4
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
3\left(r^{2} e^{r x}\right)-2\left(r e^{r x}\right)-e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
3 r^{2}-2 r-1=0
$$

Solve for r.

$$
\begin{gathered}
(3 r+1)(r-1)=0 \\
r=\left\{-\frac{1}{3}, 1\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-x / 3}$ and e^{x}. By the principle of superposition, then,

$$
y(x)=C_{1} e^{-x / 3}+C_{2} e^{x} .
$$

Differentiate the general solution.

$$
y^{\prime}(x)=-\frac{1}{3} C_{1} e^{-x / 3}+C_{2} e^{x}
$$

Apply the initial conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
y(0) & =C_{1}+C_{2}=0 \\
y^{\prime}(0) & =-\frac{1}{3} C_{1}+C_{2}=-4
\end{aligned}
$$

Solving this system of equations yields $C_{1}=3$ and $C_{2}=-3$. Therefore, the solution to the initial value problem is

$$
y(x)=3 e^{-x / 3}-3 e^{x} .
$$

Below is a graph of $y(x)$ versus x.

